Menerapkan aturan sinus dan kosinus


Sebuah, segitiga terdiri dari 3 sisi dan 3 sudut, dengan jumlah ketiga sudut adalah 180°. Untuk segitiga siku-siku, Hanya dibutuhkan 1 sisi dan 1 sudut (tidak termasuk sudut siku-siku) ataupun 2 sisi diketahui. Kita dapat mengetahui perbandingan dari panjang sisi dengan sudut pada segitiga, dan juga menghitung luas segitiga menggunakan prinsip trigonometri. 

Untuk menghitung dengan prinsip trigonometri kita akan membutuhkan aturan sinus dan cosinus. Aturan inilah yang akan bisa membantu kita menyelesaikan perhitungan dengan prinsip trigonometri.

Selanjutnya bagaimanakah aturan sinus dan aturan cosinus. 

Aturan Sinus


Menggambarkan hubungan antara perbandingan panjang sisi yang berhadapan dengan sudut terhadap sinus sudut pada segitiga. Berdasarkan aturan sinus dalam segitiga ABC, perbandingan panjang sisi dengan sinus sudut yang berhadapan dengan sisi segitiga mempunyai nilai yang sama. Seperti yang dijelaskan pada gambar di bawah ini.

Segitiga sembarang Δ ABC

Keterangan:

a = panjang sisi a

A = besar sudut di hadapan sisi a

b = panjang sisi b

B = besar sudut di hadapan sisi b

c = panjang sisi c

C = besar sudut di hadapan sisi c


Selanjutnya perhatikan contoh soal di bawah ini !

Sebuah segitiga diketahui memiliki sudut A = 30º, sisi a = 3 dan sisi b = 4. Hitung besar sudut B, besar sudut C dan panjang sisi c!

Diketahui:

A = 30º

a = 3

b = 4

Ditanya: B, C dan c?

Jawab:

  • Menentukan besar sudut B


Karena sinus harus bernilai positif baik di kuadran I maupun kuadran II, maka sudut lain yang memenuhi adalah B = (180º - 41,8º) = 138,2º

  • Menentukan besar sudut C

Jumlah sudut-sudut dalam segitiga adalah 180º, oleh karena itu berlaku:

A + B + C = 180º → C = 180º - (A + B)

Untuk B = 41,8º → C = 180º - (30º + 41,8º) = 108,2º

Untuk B = 138,2º → C = 180º - (30º + 138,2º) = 11,8º

  • Menentukan panjang sisi C


Aturan Cosinus


Merupakan aturan yang menjelaskan hubungan antara kuadrat panjang sisi dengan nilai cosinus dari salah satu sudut pada segitiga. Aturan cosinus dapat digunakan untuk menentukan unsur-unsur lain dalam suatu segitiga sembarang untuk dua kasus yaitu saat tiga sisi ketahui dan saat dua sisi dan sudut apitnya diketahui. Seperti yang dijelaskan pada gambar di bawah ini.



Keterangan:

a = panjang sisi a

A = besar sudut di hadapan sisi a

b = panjang sisi b

B = besar sudut di hadapan sisi b

c = panjang sisi c

C = besar sudut di hadapan sisi c


Sehingga aturan cosinus berlaku untuk setiap segitiga ABC sebagai berikut:


Berdasarkan rumus aturan cosinus di atas, maka di dapatkan rumus untuk menghitung besar sudutnya :



Selanjutnya  Perhatikan Contoh berikut ini 


Segitiga ABC diketahui panjang sisi a = 5 cm, panjang sisi c = 6 cm dan besar sudut B = 60º. Tentukan panjang sisi b!

Diketahui:

a = 5 cm

c = 6 cm

B = 60º

Ditanya: b?

Jawab:

 b2 = a2 + c2 - 2ac cos B

 b2 = 52 + 62 - 2(5)(6) cos 60º

 b2 = 25 + 36 - 60 (0,5)

 b2 = 61 - 30

 b2 = 31

 b = 5,56 cm

Jadi, panjang sisi b adalah 5,56 cm

1 Comments

Previous Post Next Post

Contact Form