Rangkuman Materi dan Contoh Soal Jarak titik ke titik ,Jarak titik ke garis dan Jarak titik ke Bidang

 Perhatikan gambar berikut ini!

"<yoastmark

Titik A berada di luar garis g. Untuk mengetahui jarak dari titik A dan garis g yaitu dengan menggambar garis yang melalui titik A dan tegak lurus dengan garis g (seperti dalam gambar). Sehingga jarak dari titik A ke garis g adalah sama dengan panjang ruas garis AB.

Perhatikan gambar dibawah ini!

JARAK TITIK KE BIDANG


Dalam gambar di  atas, diketahui bahwa titik A berada di luar bidang PQRS. Jarak dari titik A ke bidang PQRS dapat diketahui dengan menggambar garis g tegak lurus melalui titik A dan bidang PQRS (seperti dalam gambar). Maka jarak antara titik A dan bidang PQRS sama dengan panjang ruas AB.

Untuk lebih memahami, perhatikan contoh di bawah ini!

Dari bangun balok KLMN.OPQR di atas, diketahui panjang KL adalah 4 cm dan panjang LM adalah 2 cm. Tentukan!
a. Jarak dari titik K ke titik M
b. Jarak dari titik K ke ruas garis LM
c. Jarak dari titik K ke bidang NMQR

Penyelesaian:

a.

dimensi 3 contoh
Sumber: Dokumentasi Penulis

Sesuai penjelasan di atas, jarak antara titik K dan M sama dengan panjang ruas KM.
KLM adalah segitiga siku-siku, maka berlaku rumus Phytagoras:

Jadi, jarak antara titik K dan M adalah 2√5 cm.

b. Ruas garis KL tegak lurus dengan ruas garis LM (sudut 90 derajat).
Jadi, jarak antara titik K dan ruas garis LM = panjang ruas garis KL yaitu 4 cm.

c. Perhatikan ruas KN tegak lurus dengan bidang NMQR.
Jadi, jarak antara titik K dan bidang NMQR adalah panjang ruas garis KN = LM = 2 cm.



Jarak Titik ke Titik
Perhatikan gambar di bawah ini.

Gambar di atas merupakan dua buah titik yaitu titik A dan titik B. Jarak dari titik A dan titik B dapat dicari dengan cara menghubungkan titik A ke titik B sehingga terjadi sebuah garis. Jarak kedua titik tersebut ditentukan oleh panjang garis itu. Jadi, jarak antara dua titik merupakan panjang ruas garis yang menghubungkan kedua titik tersebut.

Untuk memantapkan pemahaman Anda tentang jarak titik ke titik pada bangun ruang dimensi tiga, silahkan perhatikan contoh soal berikut ini.

Contoh Soal 1
Perhatikan gambar kubus PQRS.TUVW di bawah ini.

Jika panjang rusuk kubus di atas adalah 8 cm dan titik X merupakan pertengahan antara rusuk PQ. Maka hitung jarak:
a) titik W ke titik P
b) titik W ke titik X
c) titik W ke titik Q
d) titik T ke titik X

Penyelesaian:
a) titik W ke titik P merupakan panjang garis PW. Garis PW merupakan panjang diagonal sisi kubus, maka dengan menggunakan teorema phytagoras:
PW =√(TW2 + PT2)
PW =√(82 + 82)
PW =√(64 + 64)
PW =√128
PW =8√2

b) titik W ke titik X merupakan panjang garis WX. Panjang PX sama dengan setengah panjang rusuk PQ, maka:
PX  = ½ PQ = ½ 8 cm = 4 cm
Dengan menggunakan teorema phytagoras:
WX =√(PW2 + PX2)
WX =√((8√2)2 + 42)
WX =√(128 + 16)
WX =√144
WX =12 cm

c) titik W ke titik Q merupakan panjang garis QW. Garis QW merupakan panjang diagonal ruang kubus, maka dengan menggunakan teorema phytagoras:
QW =√(PW2 + PQ2)
QW =√((8√2)2 + 82)
QW =√(128 + 64)
QW =√192
QW =8√3 cm

d) titik T ke titik X merupakan panjang garis TX. Panjang PX sama dengan setengah panjang rusuk PQ, maka:
PX  = ½ PQ = ½ 8 cm = 4 cm
Dengan menggunakan teorema phytagoras:
TX =√(PT2 + PX2)
TX =√(82 + 42)
TX =√(64 + 16)
TX =√80
TX =4√5 cm

Jarak Titik ke Garis
Perhatikan gambar di bawah ini.
Pada gambar di atas merupakan sebuah titik A dan sebuah garis g. Jarak antara titik A dan garis g dapat dengan membuat garis dari titik A ke garis g, memotong garis di titik P sehingga terjadi garis AP yang tegak lurus garis g. Jarak titik A ke garis g adalah panjang dari AP. Jadi, jarak antara titik dengan garis merupakan panjang ruas garis yang ditarik dari titik tersebut tegak lurus terhadap garis itu.

Untuk memantapkan pemahaman Anda tentang jarak titik ke garis pada bangun ruang dimensi tiga, silahkan perhatikan contoh soal berikut ini.

Contoh Soal 2
Perhatikan gambar kubus PQRS.TUVW di bawah ini.
Jika panjang rusuk kubus di atas adalah 8 cm dan titik X merupakan pertengahan antara rusuk PQ. Maka hitung jarak:
a) titik X ke garis ST
b) titik X ke garis RT

Penyelesaian:
Perhatikan gambar di bawah ini


a) titik X ke garis ST merupakan panjang garis dari titik X ke titik M (garis MX) yang tegak lurus dengan garis ST, seperti gambar berikut.

ST = PW dan MT = ½ ST = ½ PW = 4√2
Dengan menggunakan teorema phytagoras:
MX =√(TX2 – MT2)
MX =√((4√5)2 – (4√2)2)
MX =√(80 – 32)
MX =√48
MX =4√3 cm

b) titik X ke garis RT merupakan panjang garis dari titik X ke titik N (garis NX) yang tegak lurus dengan garis RT, seperti gambar berikut.

RT = QW dan NT = ½ RT = ½ QW = 4√3
Dengan menggunakan teorema phytagoras:
NX =√(TX2 – NT2)
NX =√((4√5)2 – (4√3)2)
NX =√(80 – 48)
NX =√32
NX =4√2 cm
 
Jarak Titik ke Bidang
Perhatikan gambar di bawah ini.


Gambar di atas merupakan sebuah tiktik A dan bidang α. Jarak titik A ke bidang α dapat dicari dengan menghubungkan titik A secara tegak lurus dengan bidang α. Jadi, jarak suatu titik ke suatu bidang adalah jarak dari titik tersebut ke proyeksinya pada bidang tersebut.

Untuk memantapkan pemahaman Anda tentang jarak titik ke bidang pada bangun ruang dimensi tiga, silahkan perhatikan contoh soal berikut ini.

Contoh Soal 3
Perhatikan gambar kubus PQRS.TUVW di bawah ini.
Jika panjang rusuk kubus di atas adalah 8 cm dan titik X merupakan pertengahan antara rusuk PQ. Maka hitung jarak titik X ke bidang RSTU

Penyelesaian:
Perhatikan gambar di bawah ini

titik X ke bidang RSTU merupakan panjang garis dari titik X ke titik Z (garis MX) yang tegak lurus dengan bidang RSTU. XZ = ½ PW =4√2 cm

Contoh Soal dan Pembahasan

Perhatikan gambar kubus PQRS.TUVW di bawah ini.

 

kubus-5.jpg.png

Jika panjang rusuk kubus di atas adalah 8 cm dan titik X merupakan pertengahan antara rusuk PQ. Maka hitung jarak:

a) titik W ke titik P

b) titik W ke titik X

c) titik W ke titik Q

d) titik T ke titik X

Penyelesaian:

a) titik W ke titik P merupakan panjang garis PW. Garis PW merupakan panjang diagonal sisi kubus, maka dengan menggunakan teorema phytagoras:

kubus-2.jpg

equitioan-3

Jadi jarak W ke P adalah PW =8√2

b) titik W ke titik X merupakan panjang garis WX. Panjang PX sama dengan setengah panjang rusuk PQ, maka:

PX  = ½ PQ = ½ 8 cm = 4 cm

Dengan menggunakan teorema phytagoras:

kubus-3.jpg

equitioan-4

Jadi jarak W ke X adalah WX =12 cm

c) titik W ke titik Q merupakan panjang garis QW. Garis QW merupakan panjang diagonal ruang kubus, maka dengan menggunakan teorema phytagoras:

kubus-4.jpg

equitioan-5

Jadi jarak W ke Q adalah QW =8√3 cm

d) titik T ke titik X merupakan panjang garis TX. Panjang PX sama dengan setengah panjang rusuk PQ, maka:

PX  = ½ PQ = ½ 8 cm = 4 cm

Dengan menggunakan teorema phytagoras:

kubus-5.jpg.png.jpg

equitioan-6

Jadi jarak T ke X adalah TX =4√5 cm

Soal-soal untuk latihan.

soal-2

2. Perhatikan gambar di bawah ini !

Perhatikan gambar di bawah ini !soal-1

Untuk diktat materi dan soal dapat dilihat mulai halaman 10 dengan Unduh Materi


Post a Comment

Previous Post Next Post

Contact Form