Pangkat, Akar, dan Logaritma



Pangkat

  • Bilangan bulat positif

Pangkat normal adalah pangkat dengan bilangan bulat positif, yaitu perkalian berulang sebanyak dengan pangkat tersebut.
Contoh:
42 = 4.4 = 16
43 = 4.4.4 = 64
44 = 4.4.4.4 = 256

  • Pangkat nol dan negatif

Pangkat tipe kedua adalah bilangan bulat kurang dari sama dengan nol.
Sifat-sifat:
  • a0 = 1
Ralat : kesalahan menulis, seharusnya a-n bukan an.

  • Pangkat dalam bentuk akar

Pangkat juga bisa diubah kedalam bentuk akar seperti berikut:

Pangkat, Akar, dan Logaritma
  • Sifat-sifat bilangan berpangkat

Sifat, bilangan, berpangkat

Akar

  • Hubungan akar dengan pangkat

Akar sebenarnya adalah bentuk lain dari pangkat pecahan, lihat persamaan berikut.


  • Aljabar dalam bentuk akar

Berikut ini adalah sifat sifat akar dalam operasi aljabar.

Penyebut Irasional

Maksudnya adalah penyebut yang berbentuk akar, bilangan tersebet disebut juga dengan bilangan yang tidak rasional, karena sulit untuk di pecahkan. Oleh karena itu penyebut harus diubah menjadi bilangan bulat atau bilangan yang rasional, dengan cara-cara berikut:

LOGARITMA

Hubungan akar, pangkat dan logaritma

Jika akar adalah bentuk lain dari pangkat, maka logaritma adalah lawan dari pangkat. Jika dalam pangkat yang kita cari adalah hasil dari perkalian berulang tersebut maka logaritma adalah mencari berapa banyak perkalian yang terjadi alias mencari pangkat itu sendiri, perhatikan contoh berikut.

Sifat-sifat logaritma

Sifat-sifat logaritma



Post a Comment

Previous Post Next Post

Contact Form